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THE EFFECT OF SHEAR ON YIELDING OF
STRUCTURAL MEMBERS

FERNAND ELLYINt and ROBERT DELOINt

Faculte des sciences appliquees, Universite de Sherbrooke,
Sherbrooke, Quebec, Canada

Abstract-Interaction surfaces are obtained for structural elements subject to combining axial, shear force, and
bending moment. The structural material is rigid-perfectly-plastic, obeying Tresca or von Mises yield criterion. A
two hinged circular arch is chosen to demonstrate the application of the preceding theory. The effect of the
inclusion of shear force is the lowering of the collapse load. Limits, in which the influence ofthe shear force on the
yielding of arches is considerable, are indicated.

NOTATION

A
2b
d
F
Fh , Fv

2h
M
m
Mo
m",

N
n
No
n",

2P
p,q
R
t
u
V

x,y.Z
rx
r
y

cross-sectional area
width of flange
mean thickness of flange
resultant reaction force of arch
horizontal and vertical reactions of arch
depth of cross-section
resultant moment
non-dimensional resultant moment
maximum plastic moment
non-dimensional resultant moment in arch obtained through division by M0

resultant axial force
non-dimensional resultant axial force
maximum plastic axial force
non-dimensional resultant axial force in arch obtained through division by No
force applied in the center of arch
Euler's multipliers
radius of circular arch
depth to diameter ratio
horizontal velocity at hinge A
resultant shear force
non-dimensional shear force
non-dimensional resultant shear force obtained through division by Vo
vertical velocity at hinge A
maximum plastic shear force
external energy rate
internal energy rate
web thickness
rectangular cartesian coordinate system
a coefficient in yield criterion
shearing-rate in general
non-dimensional shearing-rate
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Yxy shearing-rate in yz plane
I'. shortening-rate in arch
1'.11 rate of rotation due to shear in arch
b non-dimensional geometric coefficient
£x normal strain-rate
11 rate of rotation due to pure bending in hinge A
e total rotation rate in arch
K rate of curvature
i\ shortening-rate in general
A non-dimensional shortening rate in arch
Jl arbitrary positive scalar

non-dimensional geometric coefficient
¢ rate of rotation in arch
p non-dimensional lower bound to limit load
p+ non-dimensional upper bound to limit load
p* non-dimensional limit load without shear influence
(J x normal stress
(J 0 tensile yield stress of rnaterial
r xy shear stress
1>0 semi-angle of circular arch
1> coordinate of arch
X angle between the resultant reaction force and the tangent to the arch at its support, also, angle of position

of hinge B from support
t/J rate of rotation due to pure bending in hinge B
w non-dimensional geometric coefficient

1. INTRODUCTION

IN THE limit analysis, the effect of shear force in the yielding of structures has been generally
neglected. Although this assumption may be justified for "thin walled" structures, its
extension to "thicker" ones will induce inaccuracy of an unknown magnitude. The diffi
culties which one may encounter by including the shear force in yielding of beams has been
pointed out by Drucker [1]. He showed that for a given cross-section, a unique interaction
curve between the shear force and bending moment does not exist. The geometry and
loading of the entire beam enter into the analysis, thus the interaction curve is not just a local
matter. Drucker arrived at this conclusion by considering plane-stress fields within the
beam, and by employing the upper and lower bound theorems of limit analysis. Using
Prager's [2] generalized stress concept, Hodge [3] has derived unique interaction curves for
plastic beams subject to combined shear and bending.

In the first part of this paper, interaction surfaces are obtained for structural elements
subject to combined shear, normal force, and bending moment. The statically admissible
stress field approach, and that of kinematically admissible strain-rate fields, both yield
the same interaction surface. The interaction surface obtained herein is, therefore, an
exact one. A number of interaction diagrams of previous works are then derived as par
ticular projections of this surface.

A two hinged circular arch is considered in order to apply the present theory. Here too,
an exact solution is obtained and the variation of the collapse load with the geometric
parameters is discussed. Finally, the collapse load of the arch is calculated without con
sidering the contribution of the shear force on yielding. The predictions of the present
theory are compared in the last section of the paper. As expected, the inclusion of the shear
force results in lowering the collapse load. The results presented here are believed to be of
practical interest in the design of structures where the shear effect is not negligible.
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2. INTERACTION SURFACE

299

2.1 Statically admissible stress field approach

For a bending moment M, an axial force N and a shear force V, acting on the plane
yz, an appropriate distribution of the stress components (Jx and 'xy will suffice description,
Fig. 1. These stress components, for a perfectly plastic material, must also satisfy a yield
criterion,

(1)

y

~--+-----~x

z

FIG. 1. A structural element subject to bending moment. axial force and shear force.

where (J 0 is the tensile yield stress and a. is a coefficient which depends on the chosen yield
criterion. For the Tresca yield criterion a. = 2, whereas for that of von Mises a. = J3.

In a fully plastic section A, the resultant moment, shear and axial force will then be
given by:

M = L(JxydA

V = f 'xy dA = ! f ((J6-(J;rt dA
A a. A

N = L(Jx dA.

(2)
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The problem of fi~ding the interaction surface may be stated as: given values of M
and N, find a function (J x' so as to maximize V. Assuming that (Jx is not a function of z,

the problem thus posed becomes a simple problem in variational calculus. Since the
integrands in equations (2) contain only (J x and none of its derivatives, the Euler equation
will therefore become finite instead of differential. Furthermore, because of symmetry, one
needs only to consider the first trihedral of the M,N, V-space. With the Euler multipliers
denoted by p and q, the Euler equation becomes:

(3)

from which,

(4)

The resultant stresses are then obtained from substituting equation (4) into (2):

(5)

(Jo J 2 2 -,V=- [l+IX(p+qy)] 'dA.
IX A

2.2 Kinematically admissible strain-rate approach

If the deformation is assumed to be a combination of pure bending, uniform shear and
compression (or tension), then one has:

(6)
}'xy = ['

where K, A and [' are constant for a given plastic section. Substitution of(6) in the expres
sion for the rate of dissipation of energy for a section, will then show that K, A and [' are
the appropriate strain-rates to be associated with the generalized stresses M, N and V,
respectively. Proceeding in a manner similar to that of Ref. [3], one will arrive at a set of
equations identical to those of (5). Therefore, the interaction surface represented by the
integrals (5) in terms of variables p and q is an exact one, of course, within the assumptions
inherent in the limit analysis. It may be noted that by setting IX = 2 and N = 0 in equations
(5), one recovers the integral equations for the bending moment and shear force obtained
by Hodge [3]. It should be noted that the equivalency of static and kinematic approaches
is achieved by using Drucker's postulate of a "stable material" [4]. This assumption implies
convexity of the interaction surface. Recently Heyman [5] has pointed out that for a can
tilever, interaction diagram between M and V is not a proper yield surface and thus the
convexity does not hold. The arguments advanced in [5] however, do not seem applicable
for the example treated hereinafter.
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(7)

2.3 Parametric equations of the interaction surface

Calculations will be first performed for an I-section as shown in Fig. 2. The maximum
plastic moment, axial and shear force that a given section may support are:

M o = 2(Jobh2 CM

No = 4(JobhC

4
Vo = -(JobhC

IX

where,

CM = (2-c5)c5+(1-c5)w

C = c5+(l-15)w

with 15 = d/h and w = w/b, representing dimensionless geometric parameters. Note that
specific variation of the non-dimensional parameters 15 and w, will generate the following
sections:

rectangle, when w = 1, c5 = 0,

ideal I-section (sandwich), when w = 0, 15 = 15 0 ,

I-section, when w = Wo, c5 = c5o.

2 b

..c
('oJ

I I
I I

d
'---

2w

d
r

I I
'I'

FIG. 2. An I-cross-section.
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A third non-dimensional parameter, say v = W/(j = wh/bd, will then complete the descrip
tion of the geometry of the sections.

In order to simplify the results of the integrals (5), let:

and

r = rxp,

s = rxqh

SS = r+s

SD = r+s(1-15)

DS = r-s

DD = r -s(1- (5).

(8)

It may be easily verified that for the I -section of Fig. 2, and the parameters defined by
relations (7) and (8), the evaluated integrals (5) have the following form:

M I-w 2" 1 2' . h 1m(r,s) = - = -2-[DD(1+SD )'+smh- (SD)-SD(l+DD )"-sm - (DD)J
Mo 2s CM

+--2
I
-[SS(1 + DS2yt + sinh -1 (DS)-DS(1 + SS2yt -sinh -I (SS)J

2s CM
(9)

n(r,s) = ~ = l-w[sinh- I (DD)-sinh- I (SD)J+-
2

1
[sinh- 1 (SS)-sinh- I (DS)J

No 2sC sC

V l-w 2 ' 2 ,1 2 ' 2 'v(r,s) = - = -2-[(1+~D )2-(1-SD FJ+'-
C

[(l+SS )"-(I+DS )2]'
Vo sC 2s

Part of the interaction surface constructed from (9) for a rectangular section and Tresca
material is shown in Fig. 3. The remaining parts may be obtained by considering symmetry
with respect to the three planes. The interaction curves for various profiles, obtained by
the intersection ofthe plane V = 0, are shown in Fig. 4. For a rectangular cross-section, this
interaction curve was first investigated by Onat and Prager [6J, and for other sections, one
recovers the classical results [7]. Figure 5 indicates the interaction diagram obtained
through the intersection with the plane N = 0. The results of this particular case correspond
to the problem treated by Hodge [3]. There is a very small difference between curves pre
sented here and those of Ref. [3]. This is due to neglect of higher than the first-order terms
in wand 15, in Hodge's work. The interaction curve resulting from the intersection with the
plane M = 0 is given by equation

(10)

and is independent of the shape of the section.t Note that most of the rolled wide-flange
sections fall within the limits shown in Figs. 4, 5, and the extreme curves for rectangular
and sandwich sections may be regarded as upper and lower limits, respectively.

t Neglecling M in equalions (1) and proceeding wilh the variational problem: given N. what is the function
6 x which maximizes V? one will find the equation of a circle. independent of the cross-section.
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FIG. 3. Interaction surface for a rectangular cross-section.
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FIG. 4. Intersection profile with plane V = o.
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FIG. 5. Intersection profile with plane N = o.

Various projections of the interaction surface with the plane v = const. are shown in
Fig. 6. It may be noted that as long as V ~ 0·2 Vo, the effect of shear force on the interaction
diagram M-N, is negligible. When V 2: 0·6Vo, the effect of the shear force becomes quite
pronounced. The latter case, for example, may arise when the web of an I-section is fully
yielding in shear.

3. APPLICATION

A simply supported circular arch is chosen to illustrate the application of the interaction
surface derived in the previous sections.

Let the arch with radius R, subtending an angle 2cPo, be of rectangular section (Fig. 7).
A concentrated force of 2P is applied at its center. Due to symmetry, the vertical reaction at
each support is Fv = P, and the horizontal reaction Fh is the only unknown redundant.
However, for the sake of convenience, the angle X between the resultant reaction force F,
and the tangent to the arch at its support, will be taken as the unknown redundant. The
following nondimensional parameters will be adopted in the analysis to follow:

PR
P = M

o
'

CA = CM ~
C R

(11 )

where h is the half thickness of the arch. In this manner p becomes a dimensionless load
parameter and CA a dimensionless geometric parameter. In the case of a rectangular
section, CA becomes the thickness to diameter ratio.
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FIG. 7. A simply supported circular arch subject to concentrated load at its center, with appropriate
notations.
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(12)

Equilibrium of a free body section (Fig. 7) of the arch yields:

cos X-cos(<p- <Po + X)
me/> = P sin(<po - X)

n = - 1 CA cos(<p - <Po +X)
e/> 2P sin(<Po - X)

v = _~pCAsin~<p-<po+X).
e/> 2 sm(<po- X)

Note that the coordinate angle <p is measured from the center of the arch. The collapse
mechanism is shown by the dashed line in Fig. 7. Plastic hinges form at points subtended
by angles <p = 0 and <p = <Po - X. Note that hinges Band C may be chosen such that they
correspond to the position of the maximum bending moment, thus v(B) = v(C) = O.

3.1 Lower bound analysis

At hinge B, the relation between bending moment and axial force is given by (see Fig. 4
or Ref. [6]):

Substituting the appropriate values from (12) in the above relationship yields,

P- = C~2 sin(<po - X) {[(1- cos X)2 +CA2}! -(1- cos X)}.

(13)

(14)

The variable X has to be determined so that a lower bound on the collapse load can be
calculated. This is achieved by observing that the stress vector at point A is also on the
yield surface. The stress values at this point are obtained by substituting <p = 0 in equations
(12). The requirement that the stress point be on the yield surface is obtained through
equating equations (9) and (12) for point A. The result is a system of three non-linear
equations:

rnA = m(r, s)

nA = n(r, s) (15)

VA = v(r, s)

which has to be resolved. Note that the left-hand side of (15) is a function of X only. The X
obtained from (15) is then substituted in equation (14) to obtain a lower bound P-, to the
collapse load.

3.2 Upper bound analysis

The collapse mechanism of Fig. 7 requires formation of three hinges. In each of these
hinges, there will generally be three deformation modes, namely, rotation due to bending
moment, shortening due to axial force and shear deformation due to shear force. Figure 8
shows these deformation patterns for the central hinge A.

Let '1; t/J, denote the angles of rotation due to pure bending and ~A; ~B' shortening
caused by the axial force at hinge A and B, respectively. Then the deformed arch at the
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FIG. 8. The successive deformations of a hinge when subjected to various forces.

inception of the plastic collapse will be similar to that shown in Fig. 9. Note that shear
deformation at hinge A implies a small rotation f1YJ at A and B, in turn causing a small
rotation ~ at the support. It should also be noted that at hinge B a shear deformation does
not exist, since at this location VB was set equal to zero.

It could be easily verified that the horizontal and vertical motions of the central hinge
are given by

u = -(ljJ-YJ+~)(l-coscPo)R+(ljJ+f1YJ+~)[l-cos(cPo-X)JR

+f1Bcos(cPO-X)+!-f1A = 0

V = - (ljJ - YJ + ~)R sin cPo + (ljJ + f1YJ +~)R sin(cPo - X)

-f1Bsin(cPo- X)+!-rA •

(16a)

(16b)

FtG. 9. Failure mechanism of the arch.
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However, since the velocities at hinges are not independent, one must seek the proper
relationship among them. Now, let the total rotation rates be denoted:

(17)

Consequently:

(18)

(19)

The sign of any strain-rate componeat may be verified with reference to the location of the
stress point on the yield surface, i.e. equations (12) and Fig. 10.

Similarly, for the shortening rates, one has

MoAA = -AA
No

where AA and AB are non-dimensional shortening rates, both having negative signs.
Finally, the shearing rates are:

Mor A = V;YA

r B = 0

m

(20)
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FIG. 10. The yield interaction in the absence of shear force.
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(21)

(22)

(23)

where YA is the non-dimensional shearing rate at the central hinge. Because ofthe symmetry,
the horizontal velocity, equation (16a), at the hinge A is equal to zero, from which one gets:

(
Mo AB)eA cos <Po - 1+IV;;R e; cos(<Po - X)

2~ = M o AB
I-cos <Po+---

NoR eB

Substitution of relation (21) in the expression of the vertical motion of the central hinge,
equation (16b), results in:

v . (M0 AB) . ,J.. (JA(',J.. M0 YA)
R(JB = sm <Po - 1+ NoR e

B
sm(,+,o - X) +2e

B
sm '+'0 + VoR (J A .

The rate of the external work done by the applied load 2P, may then be expressed as:

»:xt = 2Pv

2 II [',J.. ( M o AB) ',J.. ) (JA (',J.. M o YA)]= PRuB sm,+,o- 1+
NoR

e
B

sm(,+,o-X +2(JB sm,+,o+VoR e
A

.

The rate of the internal work is given by:

W;nt = MO[(mA()A+vAYA+nAAA)+2(mB(JB+nBAB)]

[
(JA( YA AA) ( AB)]= 2MoeB 2e

B
mA+vAeA +nA(JA + mB+nB(JB . (24)

Since no energy can be stored in the rigid-plastic arch, the rate of energy dissipation must
be equal to the rate of work done by the external load, i.e.

W;nt = Jt;,xt

from which:

(25)

where p+ PRIMo.
Expressions (14) and (25) give lower and upper bound on the collapse load of the arch.

3.3 Numerical results

Equations (15) were programmed on a digital computer, and the variable X, found
from the solution of these equations, was substituted in (12) and (14). Thus, the stress values
mA, mB' nA' nB' vA and the lower bound to the collapse load p - were calculated. For the
upper bound analysis, the strain-rate ratios AAI(JA' YAleA and ABleB have to be computed.
For the hinge B, consideration of the normality to the yield surface (13) (Fig. 10) yields

(26)
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For the central hinge, let the total strain-rate vector be denoted by 0A' The direction cosines
may then be specified as eA/bA' 'Y A/bA and AA/bA' respectively (Fig. 3). The parametric
equations of the interaction surface are given by relations (9), therefore, the direction
cosines will have the values:

where

(27)

K 1 = v;.n~ - v~n;. K 1 = m;.v~ - m~v:.

K = (Ki+K~+KW

and a prime over the dimensionless generalized stresses 111, n and v denotes partial dif
ferentiation with respect to the variable shown as a subscript, i.e.

I an(r. s)
ns=~'

I av(r, s)
v,, = -----a;:-' etc. (28)

The strain-rate ratios evaluated from (27), are then substituted in equation (25) which
yields an upper bound to the collapse load.

The upper and lower bounds computed for a wide range of parameters involved, give
identical values. The solution presented here, is therefore, an exact one, although equations
(12) and (25) cannot be analytically deduced identical. This is due to the transcendental and
parametric nature of the equations involved. However, as will be shown in the next section,
for a particular case of the problem treated here, an analytical deduction becomes possible.

Figure 11 shows the collapse load as a function of angle cPo for various values of thick
ness to diameter ratio, t = h/R. It is evident that the limit load is very sensitive to t. On the
other hand, if one plots the collapse load against t for various values of cPo, one will note
that the effect of cPo is pronounced only at small angles and/or small values of t.

3.4 Special case~no shear effect

The collapse load of a two-hinged circular arch of uniform rectangular cross-section,
carrying a single vertical load at the center of its span, was first obtained by Onat and
Prager [6]. However, the analysis was based on the piece-wise linearized curve of Fig. 10,
in addition to neglecting the effect of shear force in yielding of the arch. Hodge [8] later
extended the analysis to cover other ranges ofgeometric parameters. Here, the same problem
will be treated as a special case of the solution given earlier. However, the exact (non-linear)
interaction curve will be considered. In this sense, even the results presented here as a
special case are an improvement over the works of Refs. [6, 8].

In the lower bound approach, it is only sufficient to determine angle X and replace it
in the relation (14). The stress point at the central hinge A, when shear effect on yielding is
omitted, will be on the curve shown on Fig. 10:

From relations (13) and (29) one then gets the identity:

CAl
cos X- cos( cPo - X) - (1 - cos X) = -4-P sin(cPo - X)·

(29)

(30)
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FIG. II. The variation of collapse load vs. arch semi-angle 4>0 for various values of thickness to diameter
ratios.

The value of p substituted from (14) results in the following relation:

cos X-cos(cPo - X) - (1- cos X)

- tsin 2 (cPo - X){[(I- cos X)2 +CA2l} - (1- cos X)} = 0

from which X can be determined.
For the upper bound, it suffices to set YA = 0 in equation (25), which gives:

8A( AA) ( AB )28
B

mA+nA
8A

+ mB+nBeB

. (M0 AB ) A-. ) 8A . A-.sm cPo - 1+-- -() sin('f'o - X +-() sm'f'O
NoR B 2 B

where 8A/28B is given by equation (21), Xby equation (31) and noting that from (24),

(31)

(32)

(33)

Replacing all the terms in (32) by their appropriate expressions in function of p*
and X, one gets, after performing some algebraic manipulations,

p*+ = p*-.

Thus the solution given here is an exact one.

(34)
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Figure 12 shows the comparison between the limit pressures predicted here and that
of Hodge [8]. As stated earlier, the solution in Ref. [8J is based on a piecewise linearized
interaction curve, Fig. 10. If the exact parabolic curve is denoted by fT' and the linearized
approximation by flin' the relation between the two interaction diagrams then will be:

p

3

2

o

p*

resent

solutlon_

(35)

o 15° 30°

00
45° 60°

FIG. 12. The comparison of limit loads as predicted by various theories.

The bounding surface lemma states that the same relation must exist among the predicted
collapse loads. The comparison between the special case solution given here and that of
Ref. [8J shows that the limit loads of the arch are indeed bounded by relation (35). On
Fig. 12, in addition, the limit pressure obtained by considering the shear effect in yielding
i.e. equations (14) or (25), is plotted. The difference between the latter predictions and that
of no shear effect increases as t is increased. Figure 13 shows the variation, in percentage,
of the extreme deviation with respect to t for arch semi-angles up to 60°. The results seem to
indicate that for arches with thickness to diameter ratio t < 0·1, the effect of shear force on
the yielding may be neglected. For thicker arches, omission of the shear effect will result
in over-estimation of the load carrying capacity.

The limit load predicted by "simple" theory (moment effect only) is considerably
higher and falls outside the scale of Fig. 12. It is however, included in Fig. 11 for the sake of
comparison.
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FIG. 13. Bounds of shear effect on collapse load of arches with <Po up to 60°.

4. CONCLUSIONS

Exact interaction surfaces for structural elements subject to combined axial force,
shear force and bending moment, are obtained. The analysis is based on the consideration
of moment, axial and shear force, as generalized stress variables. The intersection of the
interaction diagram with planes v = const. shows that up to a certain value of plastic shear
force, the influence of Von M-N curve is negligible.

A simply supported arch is considered for the application of the theory. Complete
solutions are obtained when either including or excluding the shear effect in yielding.
The results presented show that for t ~ 0·1, the shear influence may be neglected. However,
for t 2 0·1 the simple theory will over-estimate the load carrying capacity of arches, and
the effect of shear should be taken into consideration. The change in geometry of the arch
is not taken into account in the present analysis. The influence of geometric change will
not be noticeable in the range ofparameters where shear effect is pronounced. The approach
proposed here may be extended to plate problems.
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A6CTpaKT - nOJlY'faKlTClI nOBepXHOCTH B3aHMoAeHcTBHlI AJllI 3JleMeHTOB KOHCTPYKI.\HH. nOABeplKeHHblX
COBMeCTHOMY AeHcTBHKl oceBoro CABHraKlLUero YCHJlHH H H3rH6Horo MOMeHTa. nOApa3YMeBaeTClI, 'ITO
KOHCTPYKI.\HOHHblH MaTepHaJl lKeCTKO-HAeaJlbHO-nJlaCTH'IeCKHH, YAOBJleTBOplIlllHH YCJlOBHKl TeKY'IeCTH
TpecKH HJlH MH3eca. )J,aeTClI npHMep AByxwapHHpHOH KPyrJlOH apKH, Cl.\eJlbKl npeACTaBJleHHlI npHMeHeHHlI
npeAJlaraeMOH TeopHH. 3<1>lI>eKT y'lera CHJlbl CABHra YMeHbwaeT Harpy3KY pa3pyweHHlI. YKa1bIBaKlTCll
npeAeJlbl, AJlll KOTOpblX BJlHllHHe CHJlbl CABHra Ha Te'leHHe apOK llBJllleTCll 3Ha'lHTeJlbHbIM.


